\qquad

SHOW ALL WORK AND ANSWERS ON SEPARATE PAPER.

Use the properties of logarithms to rewrite the expression in terms of $\log 3$ and $\log 4$. Then use $\log 3 \approx 0.477$ and $\log 4 \approx 0.602$ to approximate the expression.

1. $\log 12$
2. $\log \frac{4}{27}$

Expand the expression (write as a sum or difference of logarithms).
3. $\log _{6} 3 x$
4. $\log _{3} \sqrt{x} y z$
5. $\log _{3} \frac{x^{2}}{9}$

Condense the expression (write as a single logarithm).
6. $2 \log _{5} x+\log _{5} 3$
7. $\frac{2}{3} \log _{2} x-5 \log _{2} y+7 \log _{2} z$

Evaluate each expression.
8. $4^{\log _{4} 87}+\log _{5} 5$
9. $\log _{3} \frac{1}{3}+\log _{4} 4$
10. $9^{\log _{9} 2}-6^{\log _{6} 10}$

Use the change of base formula to rewrite the expression. Then use a calculator to evaluate the expression. Round to three decimal places.
11. $\log _{1 / 2} 15$
12. $\log _{7} 8$

