\qquad

SHOW ALL WORK AND ANSWERS ON SEPARATE PAPER.

Use the properties of logarithms to rewrite the expression in terms of $\log 3$ and $\log 4$. Then use $\log 3 \approx 0.477$ and $\log 4 \approx 0.602$ to approximate the expression.

1. $\log \frac{3}{4}$
2. $\log 9$
3. $\log \frac{1}{4}$

Expand the expression (write as a sum or difference of logarithms).
4. $\log _{2} \frac{x}{5}$
5. $\log x y^{2}$

Condense the expression (write as a single logarithm).
6. $\log _{3} 7-\log _{3} x$
7. $\frac{1}{2} \log x-\log 4$
8. $\frac{1}{2} \log _{b} 25+3 \log _{b} z-\frac{1}{3} \log _{b} 8$

Evaluate each expression.
9. $8^{\log _{8} 9}-\log _{4} 4^{5}$
10. $\log _{8} 64-7^{\log _{7} 1}$

Use the change of base formula to rewrite the expression. Then use a calculator to evaluate the expression. Round to three decimal places.
11. $\log _{5} 64$
12. $\log _{2} 0.72$
13. $\log _{0.8} 12$

