1.7 Words, Equations, Tables, and Graphs

You have already seen that a relation may be represented as a set of ordered pairs.

You can also write a rule for the operation (s) performed on the domain value to get the range value.

A table may list the $x$-coordinates (domain values), the rule, and the $y$-coordinates (range values).

Example: Make a table for four different domain values \& write an algebraic expression for the rule.
"double number then add three"

| $x$ | $2 x+3$ | $y$ |
| :---: | :---: | :---: |
| 2 | $2 \cdot 2+3=4+3$ | 7 |
| 5 | $2 \cdot 5+3=10+3$ | 13 |
| 7 | $2 \cdot 7+3=14+3$ | 17 |
| 9 | $2 \cdot 9+3=18+3$ | 21 |

State the domain \& range of the relation.
Domain: 2, 5,7,9

$$
\text { Range: } 7,13,17,21
$$

Example: Make a table for four different domain values \& write an algebraic expression for the rule.
"double a number, then subtract one"

| $x$ | $2 x-1$ | $y$ |
| :---: | :---: | :---: |
| 3 | $2 \cdot 3-1=6-1$ | 5 |
| 7 | $2 \cdot 7-1=14-1$ | 13 |
| 10 | $2 \cdot 10-1=20-1$ | 19 |
| 12 | $2 \cdot 12-1=24-1$ | 23 |

State the domain \& range of the relation.

$$
\begin{aligned}
& \text { Domain: } 3,7,10,12 \\
& \text { Range: } 5,13,19,23
\end{aligned}
$$

Example: Make a table for four different domain values \& write an algebraic expression for the rule.

The team scores 6 points for each touchdown

| $x$ | $x \cdot 6$ or $6 x$ | $y$ |
| :---: | :---: | :---: |
| 4 | 6.4 | 24 |
| 8 | 6.8 | 48 |
| 16 | 6.16 | 96 |
| 20 | 6.20 | 120 |

State the domain \& range of the relation.

$$
\text { Domain: 4, 8, 16, } 20
$$

$$
\text { Range: } 24,48,96,120
$$

Example: Make a table for four different domain values \& write an algebraic expression for the rule.

Bob spent 5 more than 3 times what Anna spent

| $x$ | $3 x+5$ | $y$ |
| :---: | :---: | :---: |
| 3 | $3 \cdot 3+5=9+5$ | 14 |
| 9 | $3 \cdot 9+5=27+5$ | 32 |
| 14 | $3 \cdot 14+5=42+5$ | 47 |
| 24 | $3 \cdot 24+5=72+5$ | 77 |

State the domain \& range of the relation.

$$
\begin{aligned}
& D: 3,9,14,24 \\
& R: 14,32,47,77
\end{aligned}
$$

Words, equations, tables, and graphs can be used to represent relations.

An EQUATION is a mathematical sentence stating that two quantities are equal.

Relations are often written as equations with two variables - one to represent domain values and one to represent range values.

Example: An assembly line produces 30 boxes per hour.
a.) Write an equation to find the amount of boxes it can produce for any humber of hours.

$$
y=30 x
$$

b.) Make a table for $5,10,15$, and 20 hours of production.

| $X$ | $y=30 x$ | $y$ |
| :---: | :---: | :---: |
| $s$ | 30.5 | 150 |
| 10 | 30.10 | 300 |
| 15 | 30.15 | 450 |
| 20 | 30.20 | 600 |

Example: The navigation message from a satellite to a GPS in an airplane is sent once every 12 minutes.
a.) Write an equation to find the number of messages sent in any number of minutes.

$$
y=x \div 12
$$

b.) Make a table to find the number of messages in 120,180 , 240 , and 300 minutes.

| $x$ | $y=x \div 12$ | $y$ |
| :---: | :---: | :---: |
| 120 | $120 \div 12$ | 10 |
| 180 | $180 \div 12$ | 15 |
| 240 | $240 \div 12$ | 20 |
| 300 | $300 \div 12$ | 25 |

