### 2.4 Write Multiplication Expressions

You can write multiplication expressions using different symbols:


These are known as numerical expressions.

Numerical expressions: a mathematical phrase containing only numbers and operations.

You can write an algebraic expression to represent an unknown part of the problem:

45.


These are known as algebraic expressions.

Algebraic expressions: a mathematical phrase containing numbers, operations, and variables.
$45 \times d$
$45 \cdot d$
45(d)
45d

You can read each of these algebraic expressions in several ways:

45 times d
the product of 45 and $d$

45 multiplied by d

45 groups of $d$

Example: Write each word phase as a numerical expression.
1.) eight times four and two tenths

or
$8(4.2)$
2.) fifteen multiplied by one
$15 \cdot 1$ OR
$15(1)$

Example: Write each phase as an algebraic expression. (Use y as a variable.)

## 3.) a number multiplied by seven


4.) six multiplied by some number


Example: Write each expression as a word phrase.
5.) $45 n$
6.) 2.12 g
7.) $24 \cdot 5.4 x$

45 multiplied by $n$
2.12 multiplied by 24 times 5.4 times $x$

45 times $n$
the productof $45 \operatorname{in} 2.12$ ties 9
45 groups of $n \quad$ the prodnuto 2.12 ing the productof $245 \%$ 2.12 groups of 24 groups of $5.4 x$

Example: Write each phrase as an algebraic expression.
8.) the product of three and six hundredths and some number

Let $p$ be the number.

$$
3.6 \cdot p \quad 3.6 p \quad 3.6(p)
$$

9.) 18 times a number

Let $v$ oe number

$$
18(v) \quad 18 v \quad 18 v
$$

10.) the product of four and some number multiplied by 29 Let $i$ be some number.

$$
\begin{array}{ll}
4 \cdot i(29) & 4 i \cdot 29 \\
4 \cdot i \cdot 29 & 4 i(29)
\end{array}
$$

Example: **PROBLEM SOLVING**
11.) A farmer sells apples for $\$ 0.65$ each. How much do $g$ apples cost?

$$
65 \cdot \mathrm{~g}
$$$.65(\mathrm{~g})$


12.) Sela runs 2.5 miles each day for some number of days. What expression represents the total number of miles Sela runs?

$$
\begin{aligned}
& \text { Ret } p \text { be the number on } \\
& 2.5 \cdot p_{2.5 p} 2.5(p)
\end{aligned}
$$

