4.1

Matrix Operations

A matrix is a system of rows and columns. A matrix is a problem-solving tool that organizes numbers or data so that each position in the matrix has a purpose.

In algebra, a matrix is not expressed as a table, but as an array of values. Each value is called an element of the matrix.

A matrix is named by using the matrix dimensions with the letter name. The dimensions tell how many rows and columns there are in the matrix.

$$
\text { row } \times \text { column }
$$

Some matrices (the plural of matrix) have special names because of their dimensions or entries.

NAME
Row matrix
Column matrix

Square matrix

Zero matrix

DESCRIPTION
A matrix with only 1 row
A matrix with only 1 column

A matrix with the same number of rows and columns

EXAMPLE

$\left[\begin{array}{llll}3 & -2 & 0 & 4\end{array}\right]$
$\left[\begin{array}{l}1 \\ 3\end{array}\right]$
$\left[\begin{array}{rrr}4 & -1 & 5 \\ 2 & 0 & 1 \\ 1 & -3 & 6\end{array}\right]$
A matrix whose entries are all zeros $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

Two matrices are equal if their dimensions are the same and each element in the corresponding positions are equal.

COMPARING MATRICES Tell whether the matrices are equal or not equal.

13. $\left[\begin{array}{rr}4 & 0 \\ 2 & -4\end{array}\right],\left[\begin{array}{rr}4 & 0 \\ -2 & -4\end{array}\right]$
14. $\left[\begin{array}{rrr}2 & 1.5 & 4.25 \\ 0.5 & -0.5 & 0 \\ \mathbf{2} \mathbf{X 3}\end{array}\right],\left[\begin{array}{rrr}2 & \frac{3}{2} & \frac{17}{4} \\ \frac{1}{2} & -\frac{1}{2} & 0\end{array}\right]$ no equal EQUAL ${ }^{2 \times 3}$

Using the definition of equal matrices, we can find values when elements of the matrices are algebraic expressions.

$$
\begin{array}{cr}
2 x+y=6 & x-3 y=31 \\
2(31+3 y)+y=6 & x=31+3 y \\
62+6 y+y=6 & x=31+3(-8) \\
62+7 y=6 & x=31+-24 \\
-62 & x=-62 \\
7 y & =-\frac{56}{7} \\
y=-8
\end{array}
$$

You can multiply any matrix by a constant. This is called scalar multiplication. When scalar multiplication is performed, each element is multiplied by the constant, and a new matrix is formed.

Example: Perform the indicated operation.

$\left[\begin{array}{lll}\frac{4}{16} & \frac{12}{0} & -28 \\ \frac{1}{0} & -24\end{array}\right]\left[\begin{array}{lll}\frac{4}{-20} & \frac{12}{20} & \frac{36}{20} \\ -12 & -20 & -\frac{64}{4}\end{array}\right]$

Matrices can also be added and subtracted. In order to do so, they must have the same dimensions. Then, add or subtract the corresponding elements.
If $A=\left[\begin{array}{rrr}3 & -4 & 7 \\ -1 & 6 & 0\end{array}\right], B=\left[\begin{array}{rrr}7 & -4 & -2 \\ 1 & 6 & -3\end{array}\right]$, and $C=\left[\begin{array}{rr}3 & 6 \\ -4 & 5\end{array}\right]$, find each sum.
If the sum does not exist, write impossible.
a. $A+B$

$$
\begin{array}{rlrl}
A+B & =\left[\begin{array}{rrr}
3 & -4 & 7 \\
-1 & 6 & 0
\end{array}\right]+\left[\begin{array}{rrr}
7 & -4 & -2 \\
1 & 6 & -3
\end{array}\right] & & \text { Substitution } \\
& =\left[\begin{array}{rrr}
3+7 & -4+(-4) & 7+(-2) \\
-1+1 & 6+6 & 0+(-3)
\end{array}\right] & \text { Definition of matrix addition } \\
& =\left[\begin{array}{rrr}
10 & -8 & 5 \\
0 & 12 & -3
\end{array}\right] & & \text { Simplify. }
\end{array}
$$

b. $B+C$
$B+C=\left[\begin{array}{rrr}7 & -4 & -2 \\ 1 & 6 & -3\end{array}\right]+\left[\begin{array}{rr}3 & 6 \\ -4 & 5\end{array}\right] \quad$ Substitution
Since B is a 2-by-3 matrix and C is a 2-by-2 matrix, the matrices do not have the same dimensions. Therefore, it is impossible to add these matrices.

Example: Perform the indicated operation on the matrices.
a.

$2 \times 2 \quad 2 \times 2$
b. $\left[\begin{array}{ll}8 & 3 \\ 4 & 0\end{array}\right]-\left[\begin{array}{ll}2 & -7 \\ 6 & -1\end{array}\right]$
2×2
c. $\left[\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right]+\left[\begin{array}{l}1 \\ 5\end{array}\right]$

Example: Perform the indicated operation on the matrices.

$$
\begin{aligned}
& {\left[\begin{array}{rr}
12 & -8 \\
0 & 5 \\
0 & 3
\end{array}\right]+4\left[\begin{array}{rr}
-1 & 0 \\
3 & -2 \\
-4 & 5
\end{array}\right]} \\
& {\left[\begin{array}{cc}
12 & -8 \\
0 & 5 \\
0 & 3
\end{array}\right]+\left[\begin{array}{rr}
-4 & 0 \\
12 & -8 \\
-16 & 20
\end{array}\right]=\left[\begin{array}{cc}
8 & -8 \\
12 & -3 \\
-16 & 23
\end{array}\right]}
\end{aligned}
$$

Example: Perform the indicated operation on the matrices.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-21 & 3 & 0 \\
24 & -18 & -6
\end{array}\right]+\left[\begin{array}{ccc}
-8 & 2 & 14 \\
6 & 10 & -10
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-29 & 5 & 14 \\
30 & -8 & -16
\end{array}\right]}
\end{aligned}
$$

