### 9.6 Solving Systems of Equations by Graphing

What is the solution of the following systems of equations?




The three above examples are called consistent independent systems because the lines are distinct (meaning independent) and intersect (meaning consistent).

Decide whether the ordered pair is a solution of the system of linear equations.

1. $-x+y=-2$

$$
2 x+y=10
$$

$$
(-4,-2)
$$

2. $3 x+y=11$

$$
\begin{equation*}
x-2 y=6 \tag{4,-1}
\end{equation*}
$$

Solve the system of equations by graphing.
3. (1) $y=\frac{2}{3} x-1$

$$
\text { (2) }=7 x+4
$$

(1) $m=\frac{2}{3}$

$$
b=-1
$$

(2)

$$
\begin{aligned}
& m=-1=-\frac{1}{1} \\
& b=4
\end{aligned}
$$



Solve the system of equations by graphing.
4. (1) $y=-2 x+1$
(2) $y=1 x-5$
(1) $m=-2=\frac{-2}{1}$

$$
b=1
$$

(2)

$$
\begin{aligned}
& m=1=\frac{1}{1} \\
& b=-5
\end{aligned}
$$



Solve the system of equations by graphing.
5. (1) $y=2 x+0$ (2)

$$
\begin{aligned}
& x+y=3 \\
& m=2=\frac{2}{1} \\
& b=0
\end{aligned}
$$

(1)
(2)

$$
\begin{aligned}
& x+y=3 \\
& -x \\
& y=3-1 x \\
& m=-1=-\frac{1}{1} \\
& b=3
\end{aligned}
$$

Solve the system of equations by graphing.
6. $5 x+6 y=30$
(2) $y=\frac{1}{3} x-2$

$$
\begin{aligned}
& \text { (1) } 5 x+6 y=30 \\
& -5 x \\
& \frac{6 y}{6}=\frac{30}{6}-\frac{5 x}{6} \\
& y=5-\frac{5}{6} x \\
& m=\frac{-5}{6} \quad b=5
\end{aligned}
$$


(2) $m=\frac{1}{3} \quad b=-2$

Solve the system of equations by graphing.
7 (1) $y=3 x+1$
(2) $-3 x+y=-4$
(1)

$$
\begin{aligned}
& m=3=\frac{3}{1} \\
& b=1
\end{aligned}
$$

(2)

$$
\begin{gathered}
-3 x+y=-4 \\
+3 x \quad+3 x \\
y=-4+3 x \\
m=3=\frac{3}{1} b=-4
\end{gathered}
$$


parallel
NO SOLUTION

Solve the system of equations by graphing.
8.(1) $x-2 y=6$
(2) $4 y=2 x-12$
(1) $x-2 y=-6$
$-x$

$$
\frac{-2 y}{-2}=\frac{6}{-2}-\frac{1 x}{-2}
$$

$$
y=-3+\frac{1}{2} x
$$

$$
m=\frac{1}{2} \quad b=-3
$$ INFINITE

$$
\begin{array}{ll}
\frac{4 y}{4}=\frac{2 x}{4}-\frac{12}{4} & m=\frac{1}{2} \\
y=\frac{1}{2} x-3 & b=-3
\end{array}
$$

