4.2 Basic Probability Rules Part 3

From yesterday's example, what would the probability be that you get a green or a red M\&M?

$$
P(\text { green or red })=P(\text { green })+P(\text { red })=0.198+0.131=0.329
$$

Why does this formula work? Because the events "getting a green" and "getting a red" have no outcomes in common - that is, there are no M\&M's that are both green and red. We say that these two events are mutually exclusive. As a result,
this intuitive formula is known as the addition rule for mutually exclusive events.

Two events A and B are mutually exclusive if they have no outcomes in common and so can never occur together - that is $P(A$ and $B)=0$.

The addition rule for mutually exclusive events A and B says that $P(A$ or $B)=P(A)+P(B)$
Note that this rule only works for mutually exclusive events! We will develop a more general rule for finding $P(A$ or $B)$ that works for any two events in the next lesson.

Example: Randomly select a student who took the 2015 AP Statistics exam and record the student's score. Here is the probability model according to the College Board:

Score	1	2	3	4	5
Probability	0.233	0.183	0.235	0.224	0.125

Many people consider scores of 3,4, or 5 as "passing scores" because many colleges award credit or placement to students who earn these scores.
a.) Find the probability that the chosen student scored less than a 3 .

b.) Find the probability that the chosen student earned a passing score.

$$
\begin{aligned}
P(\text { passing }) & =P(3)+P(4)+P(5) \\
& =0.235+0.224+0.125 \\
& =0.584
\end{aligned}
$$

