4.2 Basic Probability Rules: Probability Models

Our work so far suggests two common sense rules that a valid probability model must obey:

1. The probability of any event is a number between 0 \& 1 . This rule follows from the definition of probability: the proportion of times the event would occur in many repetitions of the chance process.
2. All possible outcomes together must have probabilities that add up to
3. Any time we observe a chance process, some outcome must occur.

Here's one more rule that follows from the previous two:
3. The probability that an event does not occur is 1 minus the probability that the event does occur. Earlier, we found that the probability of getting a sum of 5 when rolling two fair, six-sided dice was $4 / 36$. What's the probability that the sum is not 5 ?

$$
P(\text { sum is not } 5)=1-P(\text { sum is } 5)=1-\frac{4}{36}=\frac{32}{36}=0.889
$$

> We refer to the event "not $A^{\prime \prime}$ as the complement of A and denote it by A^{c}. For that reason, this handy result is known as the complement rule. Using the complement rule in this setting is much easier than counting all 32 possible ways to get a sum that isn't 5 .
> The complement rule says that $P\left(A^{c}\right)=1-P(A)$ where A^{c} is the complement of event A; that is, the event that A does not happen.

Example: Suppose you tear open the corner of a bag of M\&M's Milk Chocolate Candies, pour one candy into your hand, and observe the color. According to Mars, Incorporated (the maker of M\&M's), the probability model is: $\quad .412 \quad 0.333 \quad 0.255$

a.) Explain why this is a valid probability model. All probabilities add

$$
0.4 R+0.333=0.745+.255=1.000^{\text {unto } 1 .}
$$

b.) Find the probability that you don't get a blue M\&M.

$$
1-0.207=0.793
$$

