Reflections

A reflection flips a point across a line so that the point and its reflection are the same distance from the line.

When the reflection line is an axis in the coordinate plane, the points have a special relationship.

$$
(x, y)->(-x, y)
$$

Example: $(2,3)->(-2,3)$
Reflections Across the x-axis : Same x/Opposite y

$$
(x, y)->(x,-y)
$$

Example: $(4,-5)$-> $(4,5)$
Reflections Across Both Axis _: Opposite $x /$ Opposite y

$$
(x, y)->(-x,-y)
$$

Example: $(6,1)->(-6,-1)$

Example: Determine whether the points are reflections across an axis. If yes, state whether the reflection is across the x-axis, y-axis, or both.
1.)
(D) $9)$ and (-29)
y-axis
2.) $(1.5,3.4)$ a $\mathrm{dd}(1.5,-3$.

$$
x-a x i s
$$

3.)

$$
\begin{aligned}
& (B) \text { and }(-\Omega) \\
& \text { MONO }
\end{aligned}
$$

5.) (26, D.4) and (-2, 0.4)

$$
y \text {-axis }
$$

4.) $1.5,1)$ a td $(1.5-2.1)$

6.) 3, Wand -3.0
both

Example: For each point, write the location of its reflection point across the axis. Samex/opposite y
7.) $(5,-6)$
8.) $(-3.5,8.4)$
9.) $(-0.7,-0.3)$
10.) $(25,-7)$

$$
(5,6) \quad(-3.5,-8.4) \quad(-0.7,0.3) \quad(25,7)
$$

Example: For each point, write the location of its reflection point across the y axis. opposite x /same y
11.) $(-4,7)$
12.) $(-0.6,-2.1)$
13.) $(12.75,-1)$
14.) $(78,54)$

$$
(4,7)
$$

$$
(0.6,-2.1)
$$

$$
(-1775,-1)
$$

$$
(-78,54)
$$

