AREA is measured by the number of units it takes to cover a surface exactly.

Since we are dealing with measurements, units play a factor in our final answer.

Area has a square unit.

For example:
 square centimeter (cm^{2})
 square inch (in ${ }^{2}$)
 square feet (ft^{2})
 square mile (mi^{2})

13.1 AREA OF A PARALLELOGRAM

A parallelogram is a four-sided rectangular figure. Since it has the appearance of a rectangle, we can find the area of a parallelogram in the same fashion that we find the area of a rectangle.

If a parallelogram has a base of b units and a height of h units, then the area (A) is b times h square units.

$$
A=b h
$$

The base can be any side of the parallelogram.

Examples: Find the area of the parallelograms.

Examples: Find the area of the parallelograms.

$A=b \cdot h$
$A=6.5$
$A=30 \mathrm{~m}^{2}$

$A=5.9 \cdot 4$
$A=23.6 \mathrm{in}^{2}$

If a triangle has a base of b units and a height of h units, then the area (A) is one half times b times h square units.

$$
A=\frac{1}{2} b h=\frac{b h}{2}
$$

Any one of the sides of a triangle can be used as a base.

The height is the length of the corresponding altitude, a line segment perpendicular to the chosen base from the opposite angle.

Example: Find the area of the triangles.

Example: Find the area of the triangles.

$$
=10 \cdot 7.4
$$

$$
A=74 \mathrm{~km}^{2}
$$

$$
A=\frac{b h}{2}=\frac{11.7 .7}{2}
$$

$$
=\frac{84.7}{2}
$$

$A=42.35 \mathrm{~km}^{2}$
13.2 AREA OF TRAPEZOIDS

A quadrilateral is any four sided object. Squares, rectangles, and parallelograms are examples of quadrilaterals.

A quadrilateral with exactly two parallel sides is known as a TRAPEZOID.

Those parallel sides are called bases.
The height of a trapezoid is the distance between the two bases. Like a parallelogram, an altitude is a segment perpendicular to both bases. The length of the altitude is called the height.

Area of a Trapezoid
If a trapezoid has bases of b_{1} and b_{2} units and a height of h units, then the area (A) of the trapezoid is one half times the height times the sum of the bases square units.

$$
\begin{aligned}
& A=\frac{1}{2} \cdot h \cdot\left(b_{1}+b_{2}\right) \\
& A=\frac{h\left(b_{1}+b_{2}\right)}{2}
\end{aligned}
$$

Example: Find the area of each trapezoid.

$$
\begin{aligned}
& A=\frac{h\left(b_{1}+b_{2}\right)}{2} \\
& A=\frac{2.9(1.5+3.3)}{2} \\
& A=\frac{2.9(4.8)}{2}=2.9 \cdot 2.4 \\
& A=6.96 \mathrm{in}^{2}
\end{aligned}
$$

Example: Find the area of each trapezoid.

13.3 AREA OF CIRCLES

If a circle has a radius of r units, then the area (A) is $\pi \cdot r \cdot r$ or $\pi \cdot r^{2}$ square units.

Remember: The radius is half of the diameter. So, if you are given the diameter, divide that by 2 to get the radius.

Example: Find the area of each circle.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \left.A=(3.14)(3)^{2}\right)^{3.3} \\
& A=(3.14)(9) \\
& A=28.26 \mathrm{yd}^{2}
\end{aligned}
$$

Example: Find the area of each circle ${ }_{6} .4$

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=(3.14)(6.4)^{\frac{2+36.4}{245} 40.26} \\
& A=(3.14)(40.96) \\
& A=128.6144 \mathrm{mi}^{2}
\end{aligned}
$$

Example: Find the area of each circle.

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=(3.14)(10)^{2} \\
& A=3.14 \cdot 100 \\
& A=314 \mathrm{~m}^{2}
\end{aligned}
$$

Example: Find the area of each circle.

$$
\begin{aligned}
& 1228 \\
& 127.69
\end{aligned}
$$

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=(3.14)(11.3)^{\frac{+1,3.6}{2^{27.649}}} \\
& A=(3.14)(127.69) \\
& A=400.9466 \mathrm{yd}^{2}
\end{aligned}
$$

13.2 Area of Trapezoids.notebook
13.3 Area of Circle.notebook

