SLOPE OF A LINE
 $$
\text { slope }=\frac{\text { rise }}{\text { run }}
$$

Find the slope of the following lines.
1.

Slope $=\frac{3}{1}=3 \quad$ Slope $=\frac{-1}{4}$

Find the slope of the following lines.

Slope $=\frac{2}{3}$

Find the slope of the following lines.
5.

Slope $=\frac{-1}{2}$
6.

$$
\text { Slope }=\frac{2}{5}
$$

7. Find the slopes of each line. vertical line

blue line
$\frac{-2}{8}=\frac{-1}{4}$
green line no slope/ undefined maroon line

$$
\frac{2 e}{1}=2
$$

orange line
0

The slope m of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

8. Find the slope of the line that passes through the points $(1,0)$ and $(3,4)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{3-1}=\frac{4}{2}=2
$$

9. Find the slope of the line that passes through the points $(3,5)$ and $\binom{1,4}{x_{2}}_{2}$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-5}{1-3}=\frac{-1}{-2}=\frac{1}{2}
$$

10. Find the slope of the line that passes through the points $\binom{2,0}{x_{1}, y_{1}}$ and $\left(\begin{array}{c}4,3) \\ x_{2}\end{array} y_{2}\right.$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-0}{4-2}=\frac{3}{2}
$$

11. Find the slope of the line that passes through the points $(0,3)$ and $\binom{6,1)}{x_{2}, y_{2}}$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-3}{6-0}=\frac{-2 \div 2}{6 \div 2}=\frac{-1}{3}
$$

12. Find the slope of the line that passes through the points $(-2,1)$ and $\left(\begin{array}{c}1,-3 \\ x_{2} \\ x_{2}\end{array}\right)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-1}{1++2}=\frac{-4}{3}
$$

13. Find the slope of the line that passes through the points $\left(\underset{x_{1}}{1}, y_{1}\right)$ and $\binom{\left(x_{2}, 2\right.}{y_{2}}$. horisiz)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-2}{5-1}=\frac{0}{4}=0
$$

14. Find the slope of the line that passes through the points $(5,-1)$ and $(5,3)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3++1}{5-5}=\frac{4}{0}=\begin{aligned}
& \text { NO } \\
& \text { SLOp R }
\end{aligned}
$$

or undefined

