
9.1 Part 2 Describe Relationships
Equations that represent functions can be written in <u>function notation</u>. The equation y = 2x + 1 can be written f(x) = 2x + 1. The symbol f(x) is read "f of x".

f(x) does NOT represent multiplication!

If you see f(3), that means you are plugging the value 3 in for x.

Example 2
If
$$h(x) = -x + 8$$
, find each of the following.
a) $h(-9)$ b) $h(6)$ c) $h(-1)$
 $h(-9) = -(-9) + 8$ $h(-9) = -(-1) + 8$
 $= 9 + 8$ $= -6 + 8$ $= 1 + 8$
 $h(-9) = -17$ $h(-9) = -2$ $h(-9) = -17$

Example 3 If $k(x) = x^2 + 4$, evaluate the function when x = 2, x = 0, x = -3. 0 = 2, x = 0, x = -3. 0 = 2, x = 0, x = -3 $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = 0, x = -3$ $k(z) = z^2 + 4, x = 0, x = 0, x = -3, x = -3$ $k(z) = z^2 + 4, x = 0, x = 0, x = -3, x = -$