9.1 Part 1 Functions

A function is a relation in which each element of the domain is paired with exactly one element of the range y 's * x's cannot repeat *

Example 1
Is $\left\{\left(\frac{x}{5},-2\right),\left(\frac{x}{3}, \frac{2}{2}\right),(\underset{4}{x},-7),\left(-\frac{x}{2}, \frac{y}{2}\right)\right\}$ a function? Why or why not?
Yes, it is a function
because the x's don't
repeat.

Example 2
Is $\{(-1,5),(-9,4),(-1,-4),(3,0)\}$ a function?
Why or why not?
$N_{\sigma_{1}}$ it is not a function because the -1 repeats.
Example 3
Is $\{(\underline{3}, 2),(\underline{8},-6),(-6,2),(\underline{7}, 4)\}$ a function?
Why or why not?
Yes, it is a function because the $x^{\prime} s$ don't repeat.

Example 4
Which mapping represents a function?

$(3,8)(-5,-6)(4,-6)$ $(9,5)(-1,0)$

$(-7,2)(4,0)$ $(8,1)(-2)-7)$

Vertical Line Test
If any vertical line passes through no more than one point of the graph of a relation, then the relation is a function.

Example 5
Use the vertical line test to determine if each relation is a function.

NO

yes

NO

