### 2.7 Assessing a Regression Model (Part 2): Standard Deviation of Residuals

Once we have all the residuals, we can measure how well the line makes predictions with the standard deviation of the residuals.

The standard deviation of the residuals $s$ measures the size of a typical residual. That is, s measures the typical distance between the actual $y$ values and the predicted $y$ values.

To calculate the standard deviation of the residuals, we square root each of the residuals, add them, divide the sum by ( $n-2$ ), and take the square root.

$$
s=\sqrt{\frac{\text { sum of squared residuals }}{n-2}}=\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}
$$

...Or you can use the "Two Quantitative Variables" function on the website! :)

Example: In Lesson 2.5, we used a least-squares regression line to model the relationship between the price of a Ford F-150 and the number of miles it had driven. The standard deviation of the residuals for this model is $s=\$ 5,740$. Interpret this value.


### 2.7 Assessing a Regression Model (Part 3): The Coefficient of Determination $\mathrm{r}^{2}$

Besides the standard deviation of the residuals $s$, we can also use the coefficient of determination $r^{2}$ to measure how well the regression line makes predictions.

The coefficient of determination $r^{2}$ measures the percent reduction in the sum of squared residuals when using the least-squares regression line to make predictions, rather than the mean value of $y$. In other words, $r^{2}$ measures the percent of the variability in the response variable that is accounted for by the least-squares regression line.

Suppose we wanted to predict the price of a particular Ford F-150 without knowing how many miles it had been driven. The following scatterplots compare the residuals when used with the average price and the residuals when used in the least-squares

$-\widehat{\text { Price }}=27834$
Sum of squares $=1374000000$


Miles driven (1000s) Sum of squares $=461300000$

To find $r^{2}$, calculate the percent reduction in the sum of squared residuals:

$$
r^{2}=\frac{1,374,000,000-461,300,000}{1,374,000,000}=\frac{912,700,000}{1,374,000,000}=\text {. } 6 .
$$

The sum of squared residuals has been reduced by $66 \%$. That is, $66 \%$ of the variability in the price of a Ford F-150 is accounted for by the leastsquares regression line with $x=$ miles driven.


