Since the log function is the inverse of the exponential function, it can be graphed by switching the domain and range.

Since $f(x)=a^{x}$ is a rapidly increasing function, $f(x)=\log _{8} x$ is a very slowly increasing function.

Notice...

1) that since $a^{0}=1$, then $\log _{a} 1=0$.
2) that since the x-axis is the asymptote for the exponential function, then the y-axis is the asymptote for the log function (unless there is a shift).
3) that the log function is a reflection across the line $y=x$.

Example 6
Sketch the graph by making a table and plotting points. State the domain, range, and any asymptotes.

Example 7
Sketch the graph by plotting points.
State the domain, range, and any asymptotes.

$$
\begin{aligned}
& y=2+\log _{2}(x-3) \\
& y-2=\log _{2}(x-3) \\
& y \\
& 2^{y-2}=x-3 \\
& +3 \\
& 2^{4-2}+3=x \\
& x \\
& \left.\frac{13}{4}=3 \frac{1}{4} 2^{0-2}+3=2^{-2}+\frac{3}{1}=\frac{1}{4}+\frac{12}{4} \right\rvert\, 0 \\
& \left.\frac{7}{2}=3 \frac{1}{2} 2^{1-2}+3=2^{-1}+3=\frac{1}{2}+\frac{6}{2} \right\rvert\, 1 \\
& 4 \\
& 5 \quad 2^{202}+3=2^{0}+3=1+3 \\
& 72^{3-2}+3=2^{1}+3=2+3 \\
& 72
\end{aligned}
$$

$$
\begin{array}{cc}
y-2=-2 \quad y-2=-1 \\
y+2+2 \quad+2+2 \\
y=0 \quad y=1 \\
y-2=0 \quad y-2=1 \\
+2+2 \quad y+2+2 \\
y=2 & y=3 \\
y-2=2 \\
+2=2
\end{array}
$$

Example 8
Sketch the graph by plotting points.
State the domain, range, and any asymptotes.

$$
\frac{1}{-1}=\frac{-\log _{2} x}{-1}
$$

$$
-y=\log _{\Downarrow} x
$$

$7^{-y}=x$

