2.5 Regression Lines (Part 2): Interpreting a Regression Line * $y=m x+b$ *

In the regression line $\hat{y}=a+b x$, a is the y-intercept $a n d$ is the slope. The y-intercept a is the predicted value of y when $x=0$. The slope b of a regression line described the predicted change in the y variable for each 1 -unit increase in the x variable.

In the Ford F -150 example, the equation of the regression line is

$$
\hat{y}=38,257-0.1629 x
$$

The slope is the coefficient of $x, b=-0.1629$. This means that the predicted price of a Ford F-150 goes down by 0.1629 dollars for each additional mile that the truck is driven.
The y-intercept is $a=38,257$. This means that the predicted price of a truck that has been driven 0 miles is $\$ 38,257$.

It is very important to include the word "predicted" (or its equivalent) in the interpretation of the slope and y-intercept. Otherwise, it may seem that our predictions will be exactly correct.

Example: In the example yesterday about tapping on cans, the equation of the regression line is $\hat{y}=248.6+2.63 k$, where x is the tapping time (in seconds) and y is the amount of soda remaining (in milliliters).

$$
\hat{y}=a+b x
$$

a.) Interpret the slope of the regression line.

The predicted amount of soda

 $b=2.63$ remaining in the can goes up by 2.63 mL for every second tapped.b.) Does the value of the y-intercept have meaning in this context? If so, interpret the y-intercept. If not, explain why. $2=248.6 \quad$ When the tapping time is 0 seconds $(x=0)$,
the amount of sold remaining is 248.6 ml .

[^0]
[^0]: **In some contexts, the y-intercept doesn't have meaning because a value of $x=$ 0 doesn't make sense. For example, in a scatterplot relating x as height and y as weight for a sample of students, it wouldn't make sense to predict the weight for a student with a height of 0.**

