5.2 Unit Rates

A RATE compares two measurements with different units.

Speeds such as miles per hour or feet per second are familiar examples of rates.

These are also examples of a unit rate. A unit rate is a rate with a denominator of 1.

To change a rate to a unit rate, divide both numerator and denominator by the denominator.

Example: Express each ratio as a unit rate.
a.) 100 miles in 4 hours $\quad{ }_{2}$.) $\$ 120$ for 5 days of work

$$
\frac{25 \text { miles }}{1 \text { hr }} \frac{824}{1 \text { day }}
$$

Example: Express each ratio as a unit rate.
c.) 24 pounds lost in 8 weeks
d.) 180 feet in 19 seconds

$$
\begin{aligned}
& \frac{24 \text { lbs }_{2} \div 8}{8 \text { iss }} \div 8 \quad \frac{18 \text { oft }}{19 \text { sec }} \div 19
\end{aligned}
$$

Example: Express each ratio as a unit rate.
e.) 12 inches of rain in 5 hours
f.) 187 miles in 7 days

$$
\begin{aligned}
& \frac{12 \text { inch } \div 5}{5 \text { hrs } \div 5}=\frac{2.4 \text { inch }}{1 \mathrm{hr}} \quad \frac{187 \text { miles } \div 7}{7 \text { days } \div 7}
\end{aligned}
$$

Example: A typical bottlenose dolphin will take about 34 breaths in 4 hours. How many breaths will a bottlenose dolphin take in 7 hours 8.5

$$
\begin{array}{r}
\frac{34 \text { heaths } \div 4}{4 \text { hrs } \div 4}=\frac{8.5 \text { breaths } \times 7 \times 4 \sqrt[4]{34.0}}{7 \text { hrs x7 }} \frac{-32}{20} \\
\frac{30}{59.5} \\
\frac{89.5 \text { breaths }}{7 \text { has }}
\end{array}
$$

Example: A snail moved 5 feet in 2 hours. At this rate, how many feet will the snail move in $\frac{5}{6}$ hours.

$$
\begin{array}{rr}
\frac{5 f t}{2 \text { hrs } \div 2} \div 2=\frac{2.5 \mathrm{ft} \times 5}{1 \text { hrs } \times 5} & \begin{array}{r}
2 \longdiv { 5 . 0 } \\
2 \\
2.5 \\
\frac{-45}{12.5} \\
\frac{12.5 \mathrm{ft}}{5 \mathrm{hrs}}
\end{array}
\end{array}
$$

