3.2 Part 2 The Elimination Method

The purpose of the elimination method (also called the linear combination method) is to eliminate one of the variables.

How can we eliminate variables?
Adding opposites

$3 x+2 y=12$
$3(2)+2 y=12$
$6+2 y=12$
-6

$$
-6 \quad-6
$$

$$
\frac{2 y}{2}=\frac{6}{2}
$$

$$
y=3
$$

$$
\text { 2. } \begin{array}{r}
5 x+2 y=-4 \\
+5 x+3 y=19 \\
\hline 5 y=\frac{15}{5} \\
y=3 \\
5 x+2 y=-4 \\
5 x+2(3)=-4 \\
5 x+6=-4 \\
-6=-6 \\
\frac{5 x}{5}=\frac{-10}{5} \\
x=-2
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
3(2 x-3 y=4) \\
4+4 x+5 y=-8 \\
+6 y=8
\end{array} \\
& \frac{-1 y}{-1}=\frac{0}{-1} \\
& y=0 \\
& -4 x+5 y=-8 \\
& -4 x+5(y)=-8 \\
& \frac{-4 x}{-4}=\frac{-8}{-4} \\
& x=2
\end{aligned}
$$

Infinite
Solutions.

$$
\begin{aligned}
& \begin{aligned}
& 6 .(3 x+5 y=6) \\
& 3(-4 x+2 y=5) \\
& \rightarrow(2 x+20 y=24 \\
&+-12 x+6 y=15
\end{aligned} \\
& \frac{26 y}{2 y}=\frac{39}{26} \\
& y=\frac{39}{26}=\frac{3}{2} \\
& -4 x+2 y=5 \\
& -4 x+8\left(\frac{3}{2}\right)=5 \\
& -4 x+\frac{3}{-3}=5 \\
& \frac{-4 x}{-4}=\frac{2}{-4} \\
& x=\frac{2}{-4}=\frac{1}{-2}
\end{aligned}
$$

9. Elise purchases shirts for $\$ 28$ and skirts for $\$ 15$. If she spends a total of $\$ 131$ and buys a total of 7 items, how many of each did she purchase? Define the variables, write a system of equations and solve.
10. A fruit company plans to make 13.25 lb gift boxes of oranges and grapefruits. Each box is to have a retail value of $\$ 21$. Each orange weighs 0.50 lb and has a retail value of $\$ 0.75$, while each grapefruit weighs 0.75 lb and has a retail value of $\$ 1.25$. How many oranges and grapefruits should be included in each box? Define the variables, write a system of equations and solve.

