4.5 Translate Expressions Involving Exponents

Look for commas to identify where to place grouping symbols or a new term!

Word Phrase	Math Expression
five cubed	5^{3}
one half of y squared, minus 14	$\frac{1}{2} y^{2}-14$
the third power of the sum of six and four, times two	$(6+4)^{3} \times 2$

Example: Determine whether the mathematical expression for each word phrase includes an exponent. Identify the key word if it does.
times 2
1.) nine times two

no exponents

3.) four cubed times eight

exponents
 no exponents

2.) a number doubled, plus three no exponents
times 3
4.) seven tripled, minus nine
5.) x cubed plus six
exponents

Example: Write each word phrase as a mathematical expression. Use n as the variable when needed. Then simplify if possible.
6.) the third power of two $2^{3}=2 \cdot 2 \cdot 2=8$
7.) (four times some number), plus theffourth power of two
$(4 n)+2^{4}$
8.) (five times two cubed) plus four times three squared

$$
\begin{gathered}
\left(5 \times 2^{3}\right)+4 \times 3^{2} \\
(5 \times 8)+4 \times 3^{2} \\
40+4 \times 3^{2} \\
40+4 \times 9 \\
40+36=(-46)
\end{gathered}
$$

Example: Write each word phrase as a mathematical expression. Use n as the variable when needed. Then simplify if possible.
9.) the fourth power of two, minus three squared
10.) the sum of a number and four, raised to an exponent of 3 , minus five

Example: Write each expression as a word phrase.
11.) $3^{3}-x$
12.) $(4 y-2)+9$
13.) Ann sells 15 tickets to the school play. Gail sells 5 fewer tickets than Ann. Michele sells twice as many tickets as Gail, squared. How many tickets do Ann, Michelle, and Gail sell in all?

