13.4 (Page 608) Geometric Sequences

A GEOMETRIC SEQUENCE is one in which each term after the first is found by multiplying the previous term by a constant called the common ratio (r).

The common ratio is found by dividing any term by the previous term.

13.4 (Page 608)
 Geometric Sequences

Find the common ratio and the next two terms for each geometric sequence:
13.4 (Page 608)

Geometric Sequences
Find the common ratio and the next two terms for each geometric sequence:

$$
81 \times \frac{1}{3}, 9, \frac{3}{v}, \cdots
$$

$$
r=\frac{27}{81}=\frac{3}{9}=\frac{1}{3}
$$

13.4 (Page 608) Geometric Sequences

Formula for the $\mathrm{n}^{\text {th }}$ Term of a Geometric Sequence:

The $n^{\text {th }}$ term, a_{n}, of a geometric sequence with first term, a_{1}, and common ratio, r, is given by either formula.

$$
a_{n}=a_{n-1} r \quad \text { or } \quad a_{n}=a_{1} r^{n-1}
$$

13.4 (Page 608)

Geometric Sequences
Write the first six terms of the described sequence:

$$
\begin{gathered}
a_{1}=4 \quad \text { and } \quad r=3 \\
4,12,36,108,324,972 \ldots \\
\times 3 \times 3 \times 3 \times 3 \times 3
\end{gathered}
$$

13.4 (Page 608)

Geometric Sequences
Write the first six terms of the described sequence:

$$
\begin{aligned}
& a_{1}=125 \quad \text { and } \quad r=\frac{-2}{5} \\
& a_{1}=125 \\
& a_{2}=125 \cdot \frac{-2}{5}=25 \cdot-2=-50 \\
& a_{3}=-50 \cdot \frac{-2}{5}=-10 \cdot-2=20 \\
& a_{4}=20 \cdot \frac{-2}{8}=4 \cdot-2=-8 \\
& a_{5}=-8 \cdot \frac{-2}{5}=16 / 5 \\
& a_{6}=\frac{16}{5} \cdot \frac{-2}{5}=-32 / 25
\end{aligned}
$$

13.4 (Page 608)

Geometric Sequences
Find the $n^{\text {th }}$ term of the geometric sequence described:

$$
\begin{aligned}
& a_{4}=10 \quad n=5 \quad r=\frac{1}{2} \\
& \vec{a}_{4}=10 \\
& \vec{a}_{5}=10 \cdot \frac{1}{2}=5
\end{aligned}
$$

13.4 (Page 608) Geometric Sequences
Find the $\mathrm{n}^{\text {th }}$ term of the geometric sequence described:

$$
\begin{aligned}
a_{6}=5 \quad n & =9 \quad r=3 \\
a_{u} & =5 \\
a_{7} & =5 \cdot 3=15 \\
a_{8} & =15 \cdot 3=45 \\
a_{9} & =45 \cdot 3=135
\end{aligned}
$$

Geometric Sequences
Find the missing geometric means for the

$$
\begin{aligned}
& 768=3 r^{5-1} \\
& \frac{768}{3}=\frac{3 r^{4}}{3} \\
& \sqrt[4]{256}=\sqrt[4]{r^{4}} \\
& r= \pm 4
\end{aligned}
$$

13.4 (Page 608)

Geometric Sequences
Find the missing geometric means for the

$$
\begin{aligned}
& a_{1} \\
& \text { 4. } \pm 8 \quad 16 \quad 8_{x \pm 2} \pm 32 \\
& a_{n}^{x \pm 2}=a_{1} r^{x=2} \\
& 64=4 r^{5-1} \\
& \frac{64}{4}=\frac{4 r^{4}}{4} \\
& \sqrt[4]{16}=\sqrt[4]{r^{4}} \\
& r= \pm 2
\end{aligned}
$$

