Reteaching Worksheet

Geometric Series

The indicated sum of the terms of a geometric sequence is called a **geometric series.**

Sum of a Geometric Series

The sum, S_n , of the first n terms of a geometric series is given by the following formula. $S_n = \frac{a_1 - a_1 r^n}{1 - r} \text{ or } S_n = \frac{a_1 (1 - r^n)}{1 - r}$

Example: Find the sum of the first seven terms of the geometric series for which $a_1 = 4$ and r = -3.

$$S_n = \frac{a_1 - a_1 r^n}{1 - r}$$

$$S_7 = \frac{4 - 4(-3)^7}{1 - (-3)}$$

$$= 2188$$

The sum of the first seven terms is 2188.

Sigma notation can also be used to express a geometric series.

Example: Write $\sum_{i=1}^{5} 2(3^{i})$ in expanded form and find the sum.

$$\sum_{j=1}^{5} 2(3^{j}) = 2(3^{1}) + 2(3^{2}) + 2(3^{3}) + 2(3^{4}) + 2(3^{5})$$

$$= 6 + 18 + 54 + 162 + 486$$

$$= 726$$

Find the sum of each geometric series.

1.
$$6 + 18 + 54 + \dots$$
 to 6 terms

2.
$$10 + 5 + \frac{5}{2} + \dots$$
 to 5 terms

3.
$$a_1 = 3, r = \frac{1}{3}, n = 4$$

4.
$$a_1 = 8$$
, $r = -2$, $n = 7$

5.
$$a_1 = 2$$
, $r = -3$, $a_5 = 162$

6.
$$a_1 = \frac{2}{3}$$
, $r = 6$, $a_5 = 864$

Use sigma notation to express each series.

9.
$$1 + 3 + 9 + 27 + 81$$

10.
$$1 - 2 + 4 - 8 + 16 - 32$$